Concrete Shelters

Utah Shelter Systems has an experienced and highly qualified team, consisting of a nuclear engineer, civil engineer, architect and EMP specialist, ready to design and build concrete shelters to the Swiss standard. We can customize to your needs; but we also have pre-designed plans for your convenience (see concrete plans). Our nuclear engineer has trained extensively in Switzerland and the team receives continual guidance and direction from Swiss engineers at ANDAIR, in Andelfingen Switzerland.



Concrete shelters are comfortable and can be designed to accommodate large numbers of people. The Swiss, almost exclusively, build concrete shelters that are placed in deep underground basements of homes, hospitals, schools, hospitals, public buildings, hotels, and most all other buildings. The entire population of Switzerland can reach a shelter in a matter of minutes. These concrete shelters are built to last for hundreds of years.

Homes and buildings in Switzerland are built to the same standard; therefore, the shelters do not need to be re-built. On the other hand, the expected life of steel shelters is only 100 years. However, the average life expectancy of homes and buildings in America (because they become outdated) is approximately 70 years. It would not be cost-effective for the United States to mandate a national concrete shelter program under our homes and buildings.

Swiss shelters for private homes must are built to a minimum code of 1 atmosphere (15 psi), and government civil defense shelters are built to a 45-psi code. Military and critical mission personnel in Switzerland are assigned to heavy blast shelters in the 200-psi plus level. Please take note that our 'All Hazard' steel shelters, if installed correctly, also protect to the 200-psi level. We believe these Swiss codes should set the standard for shelters in the United States.

Governments that mandate a national shelter program can afford the luxury of building large population concrete shelters. They build in mass and tax their citizens accordingly. They build and install these shelters to last for long periods of time. When people move and purchase another home, they can be assured that the shelter in the new home will be built to the same standard and code as the shelter they have left.

Shelters constructed of reinforced concrete are very effective; but, when built even to the minimum Swiss code, these concrete shelters cost four to five times more than the same size steel shelters. Steel shelters, by virtue of the small diameter, angled entrances and the deep burial depth, achieve a much higher level of protection than is found in the Swiss public shelter systems.

Many people in America mistakenly believe that shelter ceilings and wall slabs of an 8-inch thickness will protect them from the effects of radiation and blast. They have been misinformed. Eight inches of concrete, with no building overhead, will give a radiation PF of less than 8. Even in low radiation risk areas, this level of protection is not adequate to save lives. The accumulated dose for one week would reach between 300 rads and 600 rads, with an expected probable death rate between 50% and 100%.

The minimum blast and radiation requirement, with no building overhead, is 22 inches (see chart below). Shelters built under a building, however, have an automatic PF of approximately 15, because of the mass of the home and roof above. An eight-inch slab roof under a building will give a PF of about 100. People in low to medium fallout risk areas will most probably survive with no symptoms. People in high fallout risk areas, however, will receive about 200 rads, with some deaths. They will also be expected to have an 11% increase in survivor cancer deaths later in their lives. This concrete level does not meet the 14-inch minimum blast and radiation requirements for shelter slabs under buildings.

The following are the minimum concrete thickness for Swiss standards of 15 and 45 psi.

15 psi (minimum requirement)

45 psi

Roof slabs (not under building)
Roof slabs (under building)
Interior shelter walls
Ex. walls (underground)
Ex. walls (partially exposed)
Ex. walls (exposed)
22 in.
14 in.
14-20 in.
10 in.
20 in.
32 in.
Roof slabs (not under building)
Roof slabs (under building)
Interior shelter wall
Ex. walls (underground)
Ex. walls (partially exposed)
Ex. walls (exposed)
34 in.
22 in.
20-26 in.
10 in.
28 in.
48 in.

The interior wall thickness is dependent on the window exposure in rooms exterior to the shelter. The specifics of this information are offered in the manual, 'Technical Directives for the Construction of Private Air Raid Shelters'. See ordering information.

Call Utah Shelter Systems for all your concrete shelter needs. We would be happy to give you an initial consultation, free of charge.
Tap to call us!   (801) 380-2932